免费看岛国视频在线观看_精品电影在线_激情小说图片视频_日韩欧美国产高清91_国产精品福利在线观看_久久精品影视_ckplayer中文字幕

撥號18861759551

你的位置:首頁 > 技術文章 > Laser Damage Threshold Testing

技術文章

Laser Damage Threshold Testing

技術文章

Laser Damage Threshold Testing

Laser Damage Threshold (LDT), also known as Laser Induced Damage Threshold (LIDT), is one of the most important specifications to consider when integrating an optical component such as a mirror into a laser system. Using a laser in an application offers a variety of benefits to a standard light source, including monochromaticity, directionality, and coherence. Laser beams often contain high energies and are capable of damaging sensitive optical components. When integrating a laser and optical components into a system, it is crucial to understand the effects of laser beams on optical surfaces and how laser damage threshold is quantified for optical components.

 

The type of damage induced to an optical component by a laser beam is dependent on the wavelength, pulse length, polarization, rep rate, and spatial characteristics among other factors. During exposure to a continuous wave (CW) laser, failure can occur due to laser energy absorption and thermal damage or melting of the substrate material or the optical coating. The damage caused by a short nanosecond laser pulses is typically due to dielectric breakdown of the material that results from exposure to the high electric fields in the laser beam. For pulse widths in between these two regimes or for high rep rate laser systems, laser induced damage may result from a combination of thermally induced damage and breakdown. For ultrashort pulses, about 10ps or less, nonlinear mechanisms such as multiphoton absorption and multiphoton ionization become important.

 

Testing Laser Damage Threshold

Laser-Induced Damage Threshold (LIDT) testing is a good method for quantifying the amount of electromagnetic radiation an optical component can withstand. There are a variety of different LDT tests. For example, Edmund Optics follows the ISO-11254 procedures and methods, which is the industry standard for determining the laser damage threshold of an optical component. Utilizing the ISO-11254 standard enables the fair comparison between optical components from different manufacturers.

 

Edmund Optics' LDT testing is conducted by irradiating a number of test sites with a laser beam at different energy densities for pulsed lasers, or different power densities for CW lasers. The energy density or power density is incrementally increased at a minimum of ten sites at each increment. The process is repeated until damage is observed in of the irradiated sites. The LDT is the highest energy or power level at which no damage is observed in any of the irradiated sites. Inspection of the sites is done with a Nomarsky-type Differential Interference Contrast (DIC) microscope with 100X - 150X magnification. Visible damage is observed and the results are recorded using pass/fail criteria. Figure 1 is a typical damage probability plot of exposure sites as a function of laser pulse energy.

Figure 1: Exposure Histogram of Laser Damage Threshold Probability versus Exposure Site

 

In addition to uncoated optical components, optical coatings are also subject to damage from the presence of absorption sites and plasma burn. Figure 2 is a real-world image of coating failure due to a coating defect. For additional information on the importance of LDT testing on coatings, view The Complexities of High-Power Optical Coatings.

Figure 2: Coating Failure from 73.3 J/cm2 Source due to Coating Defect

 

Defining Laser Damage Threshold

There are many variables that affect the Laser Damage Threshold (LDT) of an optical component. These variables can be separated into three categories: laser, substrate, and optical coating (Table 1).

Variables that Affect LDT/LIDT

Laser

Substrate

Coating

Output Power

Material

Deposited Material

Pulse duration

Surface Quality

Deposition Process

Pulse Repetition Rate

Cleanliness

Pre-Coating Preparation and Cleaning

Beam Profile

Reactivity to the Environment

Lot-to-Lot Control

Beam Diameter (1/e2)

Material Absorption

Coating Design and Optimization

Wavelength

Material Homogeneity

Protective Layers

LDT is typically quantified by power or energy densities for CW and pulsed lasers, respectively. Power density is the power per cross-sectional beam area of the laser beam (typically W/cm2). Similarly, energy density is the energy per cross-sectional beam area of a specific pulse duration (typically given in J/cm2). Lasers are available with a multitude of different wavelengths and pulse durations, therefore, it is useful to be able to scale LDT data to help determine if an optical component is suitable for use with a given laser. As a general rule of thumb, the following equation can be used to roughly estimate LDT from given data, LDT(λ1,τ1), LDT(λ2,τ2). This approximation only holds when scaling over relatively small wavelength or timescale ranges, and can not be used to extrapolate e.g. from ns to fs pulses, or from UV to IR.

In this equation τ1 is the laser pulse length and λ1 is the laser wavelength for the given LDT and τ2 is the laser pulse length and λ2 is the laser wavelength with unknown LDT. For example, the LDT for a mirror is 20 J/cm2 at 1064nm @ 20 ns. The LDT using the scaling rule above at 532nm and 10 ns pulse is 20 x (532/1064) x (10/20)½ or about 7 J/cm2. For longer pulses and high rep rate pulsed lasers it is also necessary to check the CW power density limit as well. The scaling equation is not applicable to ultra-short ps to fs pulsed lasers. When using “scaling” rules, safety factors of at least two times the calculated values should be applied to help ensure optical elements will not be damaged.

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
免费看岛国视频在线观看_精品电影在线_激情小说图片视频_日韩欧美国产高清91_国产精品福利在线观看_久久精品影视_ckplayer中文字幕
日韩精品电影在线| 亚洲一区二区三区视频在线| 国产精品久久久久久久久快鸭 | 91免费国产在线观看| 亚洲成人手机在线| 综合电影一区二区三区 | 国产在线国偷精品免费看| 亚洲综合免费观看高清在线观看 | 91麻豆免费看片| 国产在线一区二区| 国产在线国偷精品产拍免费yy| 开心九九激情九九欧美日韩精美视频电影 | 香蕉成人伊视频在线观看| 天使萌一区二区三区免费观看| 亚洲国产视频a| 日韩主播视频在线| 卡一卡二国产精品| 成人黄色一级视频| 欧美日韩中文国产| 日韩丝袜美女视频| 国产片一区二区| 亚洲欧美日韩系列| 日韩av中文在线观看| 久久国产成人午夜av影院| 色综合中文字幕国产| 欧美变态tickling挠脚心| 精品久久国产老人久久综合| 日韩午夜在线观看| 亚洲男同性恋视频| 国产一区二区三区免费| 欧美日韩成人综合在线一区二区| 欧美疯狂做受xxxx富婆| 免费欧美在线视频| 精品少妇一区二区三区视频免付费| 精品久久久久久最新网址| 亚洲六月丁香色婷婷综合久久 | 555www色欧美视频| 亚洲最新视频在线观看| 成人午夜视频福利| 精品久久国产字幕高潮| 精品综合久久久久久8888| 欧美日韩一区久久| 综合分类小说区另类春色亚洲小说欧美| 日韩av网站免费在线| 日本电影欧美片| 亚洲自拍与偷拍| 欧美四级电影在线观看| 亚洲大尺度视频在线观看| 色综合久久99| 首页亚洲欧美制服丝腿| 欧美一区二区三区精品| 国产精一区二区三区| 久久精品视频在线看| 成人午夜激情视频| 亚洲高清免费在线| 久久影音资源网| 男男视频亚洲欧美| 国产亚洲午夜高清国产拍精品| 国产精品一区久久久久| 亚洲人成网站影音先锋播放| 精品视频免费看| 久久精品二区亚洲w码| 久久综合色之久久综合| 成人黄色av电影| 免费成人在线视频观看| 国产亚洲综合色| 欧美日韩视频不卡| 国产一区在线精品| 亚洲三级理论片| 久久青草欧美一区二区三区| 成人小视频在线| 亚洲一区二区三区激情| 在线成人av网站| 成人国产精品免费观看动漫| 日韩精品一二三| 国产精品免费aⅴ片在线观看| 91久久精品一区二区二区| 久久99蜜桃精品| 亚洲精品久久久蜜桃| 26uuu国产日韩综合| 在线精品国精品国产尤物884a| 亚洲高清免费观看| 亚洲一二三区视频在线观看| 91丨九色丨蝌蚪富婆spa| 奇米影视在线99精品| 欧美一卡二卡三卡四卡| 日本一区二区免费在线| 亚洲美女视频在线| 亚洲成人av福利| 国产精品18久久久久久久久久久久 | 欧美成人欧美edvon| 激情文学综合丁香| 99久久精品一区二区| 亚洲1区2区3区4区| 亚洲欧洲精品成人久久奇米网| 精品国产乱码久久久久久久 | 精品一区二区久久| 日韩电影免费在线看| 国产无人区一区二区三区| 日韩欧美黄色影院| 日韩高清不卡一区二区三区| 一区二区三区加勒比av| 亚洲视频一区二区免费在线观看| 国产偷v国产偷v亚洲高清 | 偷拍亚洲欧洲综合| 午夜不卡av在线| 看电影不卡的网站| 91免费国产视频网站| 日韩女优制服丝袜电影| 欧美日韩大陆一区二区| 欧美刺激午夜性久久久久久久| 欧美国产精品劲爆| 亚洲在线观看免费视频| 激情图区综合网| av电影在线观看一区| 91精品啪在线观看国产60岁| 精品成a人在线观看| 一区二区三区中文免费| 国内久久精品视频| 成人黄色a**站在线观看| 欧美另类变人与禽xxxxx| 精品久久久久久久久久久院品网 | 欧美电影免费提供在线观看| 欧美激情综合网| 九一九一国产精品| 欧美日韩国产影片| 国产亚洲va综合人人澡精品| 日本欧美在线观看| 欧美偷拍一区二区| 国产精品传媒视频| 久久国产精品色| 日韩精品一区二区三区在线观看 | 欧美激情一区二区在线| 亚洲国产成人av网| 制服丝袜在线91| 日本不卡的三区四区五区| 成人激情小说乱人伦| 欧美一区二区女人| 免费在线看成人av| 欧美一级免费大片| 五月婷婷另类国产| 制服丝袜中文字幕亚洲| 三级不卡在线观看| 欧美在线观看18| 日本亚洲三级在线| 久久久久久一级片| 欧美高清性hdvideosex| 另类小说欧美激情| 亚洲色大成网站www久久九九| 色婷婷av一区二区三区gif| 日本vs亚洲vs韩国一区三区| 国产情人综合久久777777| jlzzjlzz国产精品久久| 日韩高清一区二区| 国产精品私房写真福利视频| 91福利国产成人精品照片| 国产一区二区调教| 1000精品久久久久久久久| 777奇米四色成人影色区| 91污片在线观看| 丁香另类激情小说| 国产精品小仙女| 麻豆精品久久久| 亚洲国产精品久久一线不卡| 国产午夜精品理论片a级大结局| 欧美日韩在线亚洲一区蜜芽| 99久免费精品视频在线观看| 蜜桃传媒麻豆第一区在线观看| 亚洲一区二区在线视频| 亚洲一区二区三区精品在线| 一区av在线播放| 亚洲成人av资源| 亚洲大型综合色站| 免费黄网站欧美| 毛片av一区二区三区| 午夜精品福利一区二区三区蜜桃| 亚洲精品少妇30p| 一区二区三区中文字幕电影| 亚洲女厕所小便bbb| 亚洲影院理伦片| 污片在线观看一区二区| 久久99久久99小草精品免视看| 国产在线一区二区综合免费视频| 国产精品自拍一区| 一本色道亚洲精品aⅴ| 91精品国产品国语在线不卡| 久久久亚洲精华液精华液精华液| 欧美国产禁国产网站cc| 亚洲一区二区在线播放相泽| 七七婷婷婷婷精品国产| av亚洲产国偷v产偷v自拍| 日韩一级二级三级精品视频| 国产人伦精品一区二区| 天堂av在线一区| 91丨porny丨首页| 欧美影片第一页| 日韩一区欧美小说| 国产成人久久精品77777最新版本| 91成人免费在线| 亚洲精品久久久蜜桃|