免费看岛国视频在线观看_精品电影在线_激情小说图片视频_日韩欧美国产高清91_国产精品福利在线观看_久久精品影视_ckplayer中文字幕

撥號(hào)18861759551

你的位置:首頁(yè) > 技術(shù)文章 > 調(diào)制傳遞函數(shù)簡(jiǎn)介

技術(shù)文章

調(diào)制傳遞函數(shù)簡(jiǎn)介

技術(shù)文章

Introduction to Modulation Transfer Function

When optical designers attempt to compare the performance of optical systems, a commonly used measure is the modulation transfer function (MTF). MTF is used for components as simple as a spherical singlet lens to those as complex as a multi-element ecentric imaging lens assembly. In order to understand the significance of MTF, consider some general principles and practical examples for defining MTF including its components, importance, and characterization.

 

THE COMPONENTS OF MTF

To properly define the modulation transfer function, it is necessary to first define two terms required to truly characterize image performance: resolution and contrast.

 

Resolution

Resolution is an imaging system's ability to distinguish object detail. It is often expressed in terms of line-pairs per millimeter (where a line-pair is a sequence of one black line and one white line). This measure of line-pairs per millimeter (lp/mm) is also known as frequency. The inverse of the frequency yields the spacing in millimeters between two resolved lines. Bar targets with a series of equally spaced, alternating white and black bars (i.e. a 1951 USAF target or a Ronchi ruling) are ideal for testing system performance. For a more detailed explanation of test targets, view Choosing the Correct Test Target. For all imaging optics, when imaging such a pattern, perfect line edges become blurred to a degree (Figure 1). High-resolution images are those which exhibit a large amount of detail as a result of minimal blurring. Conversely, low-resolution images lack fine detail.

Figure 1: Perfect Line Edges Before (Left) and After (Right) Passing through a Low Resolution Imaging Lens

 

A practical way of understanding line-pairs is to think of them as pixels on a camera sensor, where a single line-pair corresponds to two pixels (Figure 2). Two camera sensor pixels are needed for each line-pair of resolution: one pixel is dedicated to the red line and the other to the blank space between pixels. Using the aforementioned metaphor, image resolution of the camera can now be specified as equal to twice its pixel size.

Figure 2: Imaging Scenarios Where (a) the Line-Pair is NOT Resolved and (b) the Line-Pair is Resolved

 

Correspondingly, object resolution is calculated using the camera resolution and the primary magnification (PMAG) of the imaging lens (Equations 1 – 2). It is important to note that these equations assume the imaging lens contributes no resolution loss.

 

Contrast/Modulation

Consider normalizing the intensity of a bar target by assigning a maximum value to the white bars and zero value to the black bars. Plotting these values results in a square wave, from which the notion of contrast can be more easily seen (Figure 3). Mathematically, contrast is calculated with Equation 3:

Figure 3: Contrast Expressed as a Square Wave

 

When this same principle is applied to the imaging example in Figure 1, the intensity pattern before and after imaging can be seen (Figure 4). Contrast or modulation can then be defined as how faithfully the minimum and maximum intensity values are transferred from object plane to image plane.

 

To understand the relation between contrast and image quality, consider an imaging lens with the same resolution as the one in Figure 1 and Figure 4, but used to image an object with a greater line-pair frequency. Figure 5 illustrates that as the spatial frequency of the lines increases, the contrast of the image decreases. This effect is always present when working with imaging lenses of the same resolution. For the image to appear defined, black must be truly black and white truly white, with a minimal amount of grayscale between.

Figure 4: Contrast of a Bar Target and Its Image

Figure 5: Contrast Comparison at Object and Image Planes

 

In imaging applications, the imaging lens, camera sensor, and illumination play key roles in determining the resulting image contrast. The lens contrast is typically defined in terms of the percentage of the object contrast that is reproduced. The sensor's ability to reproduce contrast is usually specified in terms of decibels (dB) in analog cameras and bits in digital cameras.

 

UNDERSTANDING MTF

Now that the components of the modulation transfer function (MTF), resolution and contrast/modulation, are defined, consider MTF itself. The MTF of a lens, as the name implies, is a measurement of its ability to transfer contrast at a particular resolution from the object to the image. In other words, MTF is a way to incorporate resolution and contrast into a single specification. As line spacing decreases (i.e. the frequency increases) on the test target, it becomes increasingly difficult for the lens to efficiently transfer this decrease in contrast; as result, MTF decreases (Figure 6).

Figure 6: MTF for an Aberration-Free Lens with a Rectangular Aperture

 

For an aberration-free image with a circular pupil, MTF is given by Equation 4, where MTF is a function of spatial resolution (ξ), which refers to the smallest line-pair the system can resolve. The cut-off frequency (ξc) is given by Equation 6.

 

Figure 6 plots the MTF of an aberration-free image with a rectangular pupil. As can be expected, the MTF decreases as the spatial resolution increases. It is important to note that these cases are idealized and that no actual system is compley aberration-free.

THE IMPORTANCE OF MTF

In traditional system integration (and less crucial applications), the system's performance is roughly estimated using the principle of the weakest link. The principle of the weakest link proposes that a system's resolution is solely limited by the component with the lowest resolution. Although this approach is very useful for quick estimations, it is actually flawed because every component within the system contributes error to the image, yielding poorer image quality than the weakest link alone.

 

Every component within a system has an associated modulation transfer function (MTF) and, as a result, contributes to the overall MTF of the system. This includes the imaging lens, camera sensor, image capture boards, and video cables, for instance. The resulting MTF of the system is the product of all the MTF curves of its components (Figure 7). For instance, a 25mm fixed focal length lens and a 25mm double gauss lens can be compared by evaluating the resulting system performance of both lenses with a Sony monochrome camera. By analyzing the system MTF curve, it is straightforward to determine which combination will yield sufficient performance. In some metrology applications, for example, a certain amount of contrast is required for accurate image edge detection. If the minimum contrast needs to be 35% and the image resolution required is 30 lp/mm, then the 25mm double gauss lens is the best choice.

 

MTF is one of the best tools available to quantify the overall imaging performance of a system in terms of resolution and contrast. As a result, knowing the MTF curves of each imaging lens and camera sensor within a system allows a designer to make the appropriate selection when optimizing for a particular resolution.

Figure 7: System MTF is the Product of the MTF of Individual Component: Lens MTF x Camera MTF = System MTF

 

CHARACTERIZATION OF MTF

Determining Real-World MTF

A theoretical modulation transfer function (MTF) curve can be generated from the optical prescription of any lens. Although this can be helpful, it does not indicate the actual, real-world performance of the lens after accounting for manufacturing tolerances. Manufacturing tolerances always introduce some performance loss to the original optical design since factors such as geometry and coating deviate slightly from an ideal lens or lens system. For this reason, in our manufacturing sites, Edmund Optics® invests in optical test and measurement equipment for quantifying MTF. This MTF test and measurement equipment allows for characterization of the actual performance of both designed lenses and commercial lenses (whose optical prescription is not available to the public). As a result, precise integration - previously limited to lenses with known prescriptions - can now include commercial lenses.

 

Reading MTF Graphs/Data

Reading Modulation Transfer Function Graphs/Data

A greater area under the MTF curve does not always indicate the optimal choice. A designer should decide based on the resolution of the application at hand. As previously discussed, an MTF graph plots the percentage of transferred contrast versus the frequency (cycles/mm) of the lines. A few things should be noted about the MTF curves offered by Edmund Optics®:

 

Each MTF curve is calculated for a single point in space. Typical field points include on-axis, 70% field, and full-field. 70% is a common reference point because it captures approximay 50% of the total imaging area.

Off-axis MTF data is calculated for both tangential and sagittal cases (denoted by T and S, respectively). Occasionally an average of the two is presented rather than the two individual curves.

MTF curves are dependent on several factors, such as system conjugates, wavebands, and f/#. An MTF curve is calculated at specified values of each; therefore, it is important to review these factors before determining whether a component will work for a certain application.

The spatial frequency is expressed in terms of cycles (or line-pairs) per millimeter. The inverse of this frequency yields the spacing of a line-pair (a cycle of one black bar and one white bar) in millimeters.

The nominal MTF curve is generated using the standard prescription information available in optical design programs. This prescription information can also be found on our global website, in our print catalogs, and in our lens catalogs supplied to Zemax®. The nominal MTF represents the best-case scenario and does not take into account manufacturing tolerances.

Conceptually, MTF can be difficult to grasp. Perhaps the easiest way to understand this notion of transferring contrast from object to image plane is by examining a real-world example. Figures 8 - 12 compare MTF curves and images for two 25mm fixed focal length imaging lenses: #54-855 Finite Conjugate Micro-Video Lens and #59-871 Compact Fixed Focal Length Lens. Figure 8 shows polychromatic diffraction MTF for these two lenses. Depending upon the testing conditions, both lenses can yield equivalent performance. In this particular example, both are trying to resolve group 2, elements 5 -6 (indicated by the red boxes in Figure 10) and group 3, elements 5 – 6 (indicated by the blue boxes in Figure 10) on a 1951 USAF resolution target (Figure 9). In terms of actual object size, group 3, elements 5 – 6 represent 6.35 – 7.13lp/mm (14.03 - 15.75μm) and group 3, elements 5 – 6 represent 12.70 – 14.25lp/mm (7.02 - 7.87μm). For an easy way to calculate resolution given element and group numbers, use our 1951 USAF Resolution EO Tech Tool.

 

Under the same testing parameters, it is clear to see that #59-871 (with a better MTF curve) yields better imaging performance compared to #54-855 (Figures 11 – 12). In this real-world example with these particular 1951 USAF elements, a higher modulation value at higher spatial frequencies corresponds to a clearer image; however, this is not always the case. Some lenses are designed to be able to very accuray resolve lower spatial frequencies, and have a very low cut-off frequency (i.e. they cannot resolve higher spatial frequencies). Had the target been group -1, elements 5-6, the two lenses would have produced much more similar images given their modulation values at lower frequencies.

Figure 8: Comparison of Polychromatic Diffraction MTF for #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right)

Figure 9: 1951 USAF Resolution Target

 

Figure 10: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 2, Elements 5 -6 (Red Boxes) and Group 3, Elements 5 – 6 (Blue Boxes) on a 1951 USAF Resolution Target

 

Figure 11: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 2, Elements 5 -6 on a 1951 USAF Resolution Target

 

Figure 12: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 3, Elements 5 – 6 on a 1951 USAF Resolution Target

 

Modulation transfer function (MTF) is one of the most important parameters by which image quality is measured. Optical designers and engineers frequently refer to MTF data, especially in applications where success or failure is contingent on how accuray a particular object is imaged. To truly grasp MTF, it is necessary to first understand the ideas of resolution and contrast, as well as how an object's image is transferred from object to image plane. While initially daunting, understanding and eventually interpreting MTF data is a very powerful tool for any optical designer. With knowledge and experience, MTF can make selecting the appropriate lens a far easier endeavor - despite the multitude of offerings.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
免费看岛国视频在线观看_精品电影在线_激情小说图片视频_日韩欧美国产高清91_国产精品福利在线观看_久久精品影视_ckplayer中文字幕
国产成人免费在线观看不卡| 麻豆精品在线观看| 日韩三级视频在线观看| 欧美一卡二卡在线观看| 久久综合色天天久久综合图片| 欧美国产一区视频在线观看| 亚洲欧美影音先锋| 日本美女一区二区三区视频| 国产大陆精品国产| 欧美唯美清纯偷拍| 久久久亚洲精品石原莉奈| 亚洲欧洲三级电影| 美脚の诱脚舐め脚责91| www.在线欧美| 日韩一区二区电影网| 中文字幕 久热精品 视频在线| 亚洲成人免费看| 国产91精品一区二区麻豆亚洲| 精品视频一区三区九区| 久久久不卡影院| 亚洲电影你懂得| 国产91露脸合集magnet| 91精品婷婷国产综合久久| 日韩美女啊v在线免费观看| 久久精品99国产国产精| 色又黄又爽网站www久久| 欧美精品一区视频| 亚洲精品国产视频| 国产91精品一区二区麻豆网站| 欧美片在线播放| 亚洲另类中文字| 成人av网站在线| 久久久久久久综合色一本| 午夜久久久久久电影| 99国内精品久久| 日本一区二区免费在线观看视频| 美日韩一区二区| 欧美日韩国产bt| 一区二区三区高清在线| www.视频一区| 国产精品久久久久aaaa| 国产精品 日产精品 欧美精品| 欧美日韩国产区一| 夜夜嗨av一区二区三区网页 | 99re视频这里只有精品| 久久先锋资源网| 久久国产夜色精品鲁鲁99| 这里只有精品99re| 婷婷久久综合九色综合绿巨人| 99久久精品国产一区| 日本一区二区三区高清不卡| 国产一区二区免费在线| 欧美va在线播放| 免费在线观看一区| 日韩欧美成人激情| 日韩成人午夜电影| 在线91免费看| 免费观看91视频大全| 日韩网站在线看片你懂的| 欧美bbbbb| 日韩欧美亚洲一区二区| 久久99精品久久久久| 精品久久久久久久一区二区蜜臀| 免费成人你懂的| 精品入口麻豆88视频| 精品午夜一区二区三区在线观看| 精品日产卡一卡二卡麻豆| 狠狠色丁香九九婷婷综合五月| 制服丝袜日韩国产| 国产综合色在线视频区| 国产精品欧美精品| 色综合久久综合网97色综合| 一级做a爱片久久| 制服.丝袜.亚洲.中文.综合| 免费在线观看一区| 日本一区二区三区视频视频| 91在线码无精品| 视频一区视频二区中文| 欧美成人精品高清在线播放| 国产风韵犹存在线视精品| 亚洲美女视频一区| 欧美一区二区视频免费观看| 国产精品一卡二卡在线观看| 国产精品久久毛片a| 欧美日韩国产小视频在线观看| 久久99精品国产.久久久久| 国产三级一区二区三区| 欧美性猛交xxxxxx富婆| 久久疯狂做爰流白浆xx| 国产精品久久久久影院| 欧美日韩免费电影| 国内成+人亚洲+欧美+综合在线| 国产精品美日韩| 欧美日韩成人激情| 国产不卡一区视频| 亚瑟在线精品视频| 欧美激情一区不卡| 欧美欧美午夜aⅴ在线观看| 国产高清无密码一区二区三区| 亚洲视频一区二区在线| 欧美大片在线观看一区二区| 一本一道久久a久久精品综合蜜臀| 免费在线观看日韩欧美| 亚洲视频中文字幕| 久久综合久久99| 欧美日韩精品电影| 成人丝袜视频网| 麻豆精品一区二区av白丝在线| 亚洲女同女同女同女同女同69| 精品国产乱码久久久久久闺蜜| 一本高清dvd不卡在线观看| 精品一区二区三区视频在线观看| 亚洲婷婷国产精品电影人久久| 日韩久久精品一区| 欧美亚洲丝袜传媒另类| 国产精品99久久不卡二区| 免费在线观看精品| 亚洲1区2区3区4区| 亚洲精品一二三四区| 国产亚洲一区字幕| 日韩欧美黄色影院| 欧美日韩夫妻久久| av网站免费线看精品| 国产一区二区三区不卡在线观看| 性感美女久久精品| 亚洲一级不卡视频| 亚洲婷婷综合色高清在线| 久久久一区二区| 日韩精品一区在线观看| 7777精品伊人久久久大香线蕉完整版 | 欧美午夜精品一区二区三区| 丰满放荡岳乱妇91ww| 久草中文综合在线| 亚洲国产中文字幕| 亚洲欧美一区二区三区久本道91 | 国产精品久久久久久久久免费桃花| 欧美一级艳片视频免费观看| 日本精品一区二区三区高清| 波多野结衣在线一区| 国产精品一二三四| 黄页网站大全一区二区| 久久99国产精品免费| 免费视频最近日韩| 男人的天堂久久精品| 麻豆国产91在线播放| 精品一区二区三区在线播放视频| 日韩国产精品大片| 美女视频网站黄色亚洲| 麻豆久久久久久| 久久99精品国产麻豆婷婷| 久久99国内精品| 国产精品一区二区果冻传媒| 成人爽a毛片一区二区免费| gogo大胆日本视频一区| 成人网在线免费视频| 91首页免费视频| 91免费小视频| 欧美久久久久久久久久| 日韩一区二区三区四区| 欧美精品一区二区高清在线观看| 2024国产精品| 国产欧美一区二区精品久导航| 国产农村妇女精品| 中文字幕在线不卡| 亚洲成人免费视频| 极品少妇xxxx偷拍精品少妇| 高清不卡在线观看av| 91蜜桃免费观看视频| 51精品视频一区二区三区| 精品国产污污免费网站入口| 国产精品女同互慰在线看| 1024国产精品| 午夜精品福利一区二区三区av| 美腿丝袜亚洲三区| 国产白丝精品91爽爽久久| 不卡av免费在线观看| 欧美午夜视频网站| 欧美精品一区二区三区久久久| 国产精品久久久久久久久快鸭| 亚洲一区二区三区自拍| 久久国产精品色婷婷| 99久久精品免费精品国产| 欧美午夜视频网站| 国产丝袜欧美中文另类| 亚洲最大成人综合| 国产一区二区0| 色婷婷综合久久久中文一区二区| 6080日韩午夜伦伦午夜伦| 中文字幕精品一区二区三区精品| 亚洲尤物在线视频观看| 国产真实精品久久二三区| 91农村精品一区二区在线| 欧美一级久久久久久久大片| 国产精品日韩精品欧美在线| 亚洲成人精品一区| 成人午夜精品在线| 日韩一区二区高清| 亚洲午夜成aⅴ人片| 国产成人免费视频| 日韩西西人体444www|